Chemistry 141
Dr. Cary Willard
Exam 1b

Name \qquad
February 22, 2011

Multiple Choice	(30 points)
Page 5	(14 points)
Page 6	(14 points)
Page 7	(10 points)
Page 8	(14 points)
Page 9	(15 points)
Page 10	(15 points)
Total	(112 points)
Percent	(100\%)

All work must be shown to receive credit. Give all answers to the correct number of significant figures

Avogadros number $=6.022 \times 10^{23} / \mathrm{mol}$
4 quarts $=1$ gallon
36 in = 1 yard

Solubility Rules

- Alkali metals and NH_{4}^{+}compounds are soluble.
- Nitrates $\left(\mathrm{NO}_{3}^{-}\right)$, acetates $\left(\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right)$, chlorates $\left(\mathrm{ClO}_{3}^{-}\right)$, perchlorates $\left(\mathrm{ClO}_{4}^{-}\right)$, and sulfates $\left(\mathrm{SO}_{4}^{-2}\right)$ are generally soluble (except for $\mathrm{Sr}^{+2}, \mathrm{Ca}^{+2}, \mathrm{Ba}^{+2}, \mathrm{~Pb}^{+2}$, and $\mathrm{Hg}_{2}{ }^{+2}$ sulfates).
- Chlorides $\left(\mathrm{Cl}^{-}\right)$, bromides $\left(\mathrm{Br}^{-}\right)$, iodides $\left(I^{-}\right)$, are soluble (except for Silver(Ag^{+}),mercury $(\mathrm{I})\left(\mathrm{Hg}_{2}{ }^{+2}\right)$, and lead(II)($\left.\mathrm{Pb}^{+2}\right)$ halides).
- Most compounds not included above are not soluble.
- i.e. Sulfides $\left(\mathrm{S}^{-2}\right)$, carbonates $\left(\mathrm{CO}_{3}{ }^{-2}\right)$, phosphates $\left(\mathrm{PO}_{4}{ }^{-3}\right)$, chromates $\left(\mathrm{CrO}_{4}^{-2}\right)$, Oxides (O^{-2}), and $\mathrm{Hydroxides}\left(\mathrm{OH}^{-}\right)$
- (Ca(OH)2, $\mathrm{CaO}, \mathrm{Sr}(\mathrm{OH})_{2}, \mathrm{SrO}, \mathrm{Ba}(\mathrm{OH})_{2}$ and BaO are slighty soluble.)

Grossmont College
 Periodic Table

IA
VIIA NOBL

$\begin{gathered} 1 \\ \mathbf{H} \\ 1.008 \end{gathered}$	IIA										
$\begin{gathered} 3 \\ \mathrm{Li} \\ 6.941 \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 9.012 \end{gathered}$										
$\begin{gathered} 11 \\ \mathrm{Na} \\ 23.00 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.30 \\ \hline \end{gathered}$	IIIB	IVB	VB	VIB	VIIB	VIII	VIII	VIII	IB	IIB
19	20	21	22	23	24	25	26	27	28	29	30
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
39.10	40.08	44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.70	63.55	65.38
37	38	39	40	41	42	43	44	45	46	47	48
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd
85.47	87.62	88.91	91.22	92.91	95.94	(99)	101.1	102.9	106.4	107.9	112.4
55	56	57	72	73	74	75	76	77	78	79	80
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6
87	88	89	104	105	106	107	108	109	110		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	??		
(223)	226.0	227.0	(261)	(262)	(263)	(262)	(265)	(266)	(269)		

Lanthanide series

Actinide series

58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\mathbf{C e}$	$\mathbf{P r}$	$\mathbf{N d}$	$\mathbf{P m}$	$\mathbf{S m}$	$\mathbf{E u}$	$\mathbf{G d}$	$\mathbf{T b}$	$\mathbf{D y}$	$\mathbf{H o}$	$\mathbf{E r}$	$\mathbf{T m}$	$\mathbf{Y b}$	$\mathbf{L u}$
140.1	140.9	144.2	(147)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
$\mathbf{T h}$	$\mathbf{P a}$	\mathbf{U}	$\mathbf{N p}$	$\mathbf{P u}$	$\mathbf{A m}$	$\mathbf{C m}$	$\mathbf{B k}$	$\mathbf{C f}$	$\mathbf{E s}$	$\mathbf{F m}$	$\mathbf{M d}$	$\mathbf{N o}$	$\mathbf{L r}$
232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Multiple Choice (30 points) - Give the best answer for each of the following questions.

1. A consistent explanation of known observations is called
a. an experiment.
c. a theory.
b. a prediction.
d. a hypothesis.
2. Which of the following statements does not describe a chemical property of oxygen?
a. When coal is burned in oxygen, the process is called combustion.
b. Iron will rust in the presence of oxygen.
c. Oxygen combines with carbon to form carbon dioxide gas.
d. The pressure is caused by collision of oxygen molecules with the sides of a container.
3. A student measured the diameter of a sphere and determined the average value. His measurements are $6.17 \mathrm{~cm}, 6.16 \mathrm{~cm}, 6.16 \mathrm{~cm}$ and 6.17 cm If the true diameter is 6.18 cm , what can be said about the student's results?
a. It is accurate and precise.
b. It is precise but not accurate.
c. It is accurate but not precise.
d. It is neither precise nor accurate.
4. To the correct number of significant figures, what is the temperature reading on the following Celsius thermometer?
a. $15^{\circ} \mathrm{C}$
b. $16^{\circ} \mathrm{C}$
c. $15.67^{\circ} \mathrm{C}$
d. $15.6^{\circ} \mathrm{C}$
5. Which of the following is not explained by Dalton's atomic theory?
a. the law of multiple proportions
b. conservation of mass during a chemical reaction
c. the existence of more than one isotope of an element
d. the law of definite proportions
6. How many protons (p) and neutrons (n) are in an atom of calcium-46?
a. $20 \mathrm{p}, 26 \mathrm{n}$
b. $26 \mathrm{p}, 20 \mathrm{n}$
c. $46 \mathrm{p}, 60 \mathrm{n}$
d. $20 \mathrm{p}, 46 \mathrm{n}$
7. In which set do all elements tend to form cations in binary ionic compounds?
a. Li, B, O
b. $\mathrm{O}, \mathrm{F}, \mathrm{Cl}$
c. $\mathrm{N}, \mathrm{As}, \mathrm{Bi}$
d. $\mathrm{Mg}, \mathrm{Cr}, \mathrm{Pb}$
8. The solid compound, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, contains
a. Na^{+}ions and $\mathrm{CO}_{3}{ }^{2-\text {-ions. }}$
b. $\mathrm{Na}^{+}, \mathrm{C}^{4+}$, and O^{2-} ions.
c. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ molecules.
d. $\mathrm{Na}_{2}{ }^{+}$and $\mathrm{CO}_{3}{ }^{2-}$ ions.
9. How many H^{+}ions can the acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$, donate per molecule?
a. 0
b. 1
c. 2
d. 3
10. Which one of the following statements about balanced equations is false? In a balanced reaction
a. mass must be conserved.
b. molecules must be balanced on both sides of the reaction arrow.
c. net charge must be balanced on both sides of the reaction arrow.
d. atoms must be balanced on both sides of the reaction arrow.
11. Which statement about diluted solutions is false? When a solution is diluted
a. the concentration of the solution decreases.
b. the number of moles of solvent remains unchanged.
c. the number of moles of solute remains unchanged.
d. the molarity of the solution decreases.
12. $\mathrm{HBr}, \mathrm{HCl}, \mathrm{HClO} 4, \mathrm{KBr}$, and NaCl are all classified as
a. weak electrolytes.
c. strong electrolytes.
b. acids.
d. nonelectrolytes.
13. What reagent could be used to separate Br^{-}from $\mathrm{NO}_{3}-$ when added to an aqueous solution containing both?
a. $\mathrm{NaI}(a q)$
b. $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$
c. $\mathrm{AgNO}_{3}(\mathrm{aq})$
d. $\mathrm{CuSO}_{4}(a q)$
14. What is the oxidation number of the oxygen atom in $\mathrm{H}_{2} \mathrm{O}_{2}$?
a. +2
b. +1
c. -1
d. -2
15. Which species functions as the oxidizing agent in the following reduction-oxidation reaction:

$$
5 \mathrm{Fe}^{+2}(\mathrm{aq})+\mathrm{MnO}_{4}^{-1}(\mathrm{aq})+8 \mathrm{H}^{+1}(\mathrm{aq}) \rightarrow \mathrm{Mn}^{+2}(\mathrm{aq})+5 \mathrm{Fe}^{+3}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})
$$

a. $\mathrm{Mn}^{2}+(a q)$
b. $\mathrm{MnO}_{4}^{-}(a q)$
c. $\mathrm{H}^{+}(a q)$
d. $\mathrm{Fe}^{2+(a q)}$

Problems

1. (5 points) Give the IUPAC name for the following compounds
a. MgCl_{2}
magnesium chloride
b. AlPO_{3} aluminum phosphite
c. $\mathrm{Cl}_{2} \mathrm{O}_{7}$
dichorine heptoxide
d. KBrO_{2} \qquad
potassium bromite
e. $\mathrm{V}\left(\mathrm{NO}_{2}\right)_{5}$ \qquad
vanadium(V) nitrite
2. (5 points) Write the correct formula for each of the following compounds
a. Ammonium hypochlorite \qquad
b. Zinc iodide \qquad
c. Ferric sulfate \qquad
d. Mercury(I) carbonate \qquad
e. Sulfur trioxide \qquad
3. (4 points) Perform the following calculation and report your answer with the correct number of significant figures.

$$
\frac{6.34+(90.3)(0.05442)+943.8642}{(85.3992-86.00)}=\frac{6.34+4.91+943.8642}{85.3992-86.00}=\frac{955.12}{-0.60}=-1600
$$

4. (8 points) Copper can be drawn into thin wires. How many meters of 34 gauge wire (diameter $=$ $6.304 \times 10^{-3} \mathrm{in}$) can be produced from the 5.01 lb of covallite, an ore of copper that is 66.0% copper by mass (Hint: Treat the wire as a cylinder: the density of copper is $8.95 \mathrm{~g} / \mathrm{cm}^{3}$, figure out the mass of copper wire per unit length.)

Volume of 1 in wire $=\left(\pi r^{2}\right) l=\left(\frac{\pi d^{2}}{4}\right) l=\left(\frac{\pi\left(6.304 \times 10^{-3} \text { in }\right)^{2}}{4}\right) 1$ in $=3.121 \times 10^{-5}$ in 3

$$
\frac{g C u}{\text { in }}=\frac{3.121 \times 10^{-5} \mathrm{in}^{3}}{\text { in wire }} \times\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}\right)^{3} \times \frac{8.95 \mathrm{~g}}{1 \mathrm{~cm}^{3}}=\frac{4.58 \times 10^{-3} \mathrm{gCu}}{\text { in wire }}
$$

$$
\begin{gathered}
? m \text { wire }=5.01 \mathrm{lb} \text { ore } \times \frac{454 \mathrm{~g} \text { ore }}{1 \mathrm{lb} \text { ore }} \times \frac{66.0 \mathrm{~g} \mathrm{Cu}}{100 \mathrm{~g} \text { ore }} \times \frac{1 \text { in wire }}{4.58 \times 10^{-3} \mathrm{~g} \mathrm{Cu}} \times \frac{2.54 \mathrm{~cm} \text { wire }}{1 \text { in wire }} \\
\times \frac{1 \mathrm{~m} \text { wire }}{100 \mathrm{~cm} \text { wire }} \times \frac{1 \mathrm{~km} \text { wire }}{1000 \mathrm{~m} \text { wire }}=8.33 \mathrm{~km} \text { wire }
\end{gathered}
$$

5. (6 points) An element X forms both a dichloride $\left(\mathrm{XCl}_{2}\right)$ and a tetrachloride $\left(\mathrm{XCl}_{4}\right)$. Treatment of $10.00 \mathrm{~g} \mathrm{XCl}_{2}$ with excess chlorine forms $12.55 \mathrm{~g} \mathrm{XCl}_{4}$. Calculate the atomic mass of X . Predict its identity.

$$
\begin{aligned}
& 12.55 \mathrm{~g} \mathrm{xCl}_{2}-10.00 \mathrm{~g} \mathrm{XCl}_{4}=2.55 \mathrm{~g} \mathrm{Cl} \text { added } \\
& 2.55 \mathrm{~g} \mathrm{Cl} \times \frac{1 \mathrm{~mol} \mathrm{Cl}}{35.45 \mathrm{~g} \mathrm{Cl}} \times \frac{1 \mathrm{~mol} \mathrm{XCl}_{2}}{2 \mathrm{~mol} \mathrm{Cl}}=0.0360 \mathrm{~mol} \mathrm{XCl}_{2} \\
& \text { molar mass } X_{C l}=\frac{10.00 \mathrm{~g} \mathrm{XCl}_{2}}{0.0360 \mathrm{~mol} \mathrm{XCl}_{2}}=278 \mathrm{gXCl}_{2} / \mathrm{mol} \\
& \text { molar mass }=278 a m u=1 x(? a m u / X)+2 C l(35.45 \mathrm{amu} / C l) \\
& X=207.1 \text { probably lead }
\end{aligned}
$$

6. (6 points) Complete the following double displacement reaction with balanced molecular, total ionic, and net ionic equations.
$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2(a q)}+\mathrm{H}_{3} \mathrm{PO}_{4(a q)} \rightarrow$
$3 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2(a q)}+2 \mathrm{H}_{3} \mathrm{PO}_{4(a q)} \rightarrow \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)}+6 \mathrm{HNO}_{3(a q)}$

Balanced total ionic equation
$3 \mathrm{Fe}^{+2}{ }_{(a q)}+6 \mathrm{NO}_{3}{ }^{-1}{ }_{(a q)}+2 \mathrm{H}_{3} \mathrm{PO}_{4(a q)} \rightarrow \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)}+6 \mathrm{H}^{+1}{ }_{(a q)}+6 \mathrm{NO}_{3}{ }^{-1}{ }_{(a q)}$

Balanced net ionic equation
$3 \mathrm{Fe}^{+2}{ }_{(a q)}+2 \mathrm{H}_{3} \mathrm{PO}_{4(a q)} \rightarrow \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2^{(s)}}+6 \mathrm{H}^{+1}{ }_{(a q)}$
7. (4 points) Balance the following redox half reaction that occurs in basic solution

$$
\begin{gathered}
\mathrm{SO}_{2} \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-1} \rightarrow \quad \mathrm{SO}_{3}^{-2}+2 \mathrm{Cl}^{-1}+2 \mathrm{H}^{+1} \\
2 \mathrm{H}^{+1}+2 \mathrm{OH}^{-1} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{SO}_{2} \mathrm{Cl}_{2}+2 \mathrm{OH}^{-1}+2 \mathrm{e}^{-1} \rightarrow \mathrm{SO}_{3}^{-2}+2 \mathrm{Cl}^{-1}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Is this an oxidation or a reduction?
reduction
8. (6 points) Balance the following redox reaction in acidic solution

$$
\mathrm{S}_{2} \mathrm{O}_{3}^{-2}+\mathrm{OCl}^{-1} \rightarrow \mathrm{Cl}^{-1}+\mathrm{S}_{4} \mathrm{O}_{6}^{-2}
$$

$1^{\text {st }}$ half reaction

$$
2 \mathrm{~S}_{2} \mathrm{O}_{3}^{-2} \rightarrow \mathrm{~S}_{4} \mathrm{O}_{6}^{-2}+2 \mathrm{e}^{-1}
$$

$2^{\text {nd }}$ half reaction

$$
\mathrm{OCl}^{-1}+2 \mathrm{H}^{+1}+2 \mathrm{e}^{-1} \rightarrow \mathrm{Cl}^{-1}+\mathrm{H}_{2} \mathrm{O}
$$

overall reaction in acid

$$
2 \mathrm{~S}_{2} \mathrm{O}_{3}^{-2}+\mathrm{OCl}^{-1}+2 \mathrm{H}^{+1} \rightarrow \mathrm{~S}_{4} \mathrm{O}_{6}^{-2}+\mathrm{Cl}^{-1}+\mathrm{H}_{2} \mathrm{O}
$$

9. (8 points) When 6.853 mg of a sex hormone containing C, H, and O was burned in a combustion analysis, 19.73 mg of CO_{2} and 6.391 mg of $\mathrm{H}_{2} \mathrm{O}$ were obtained. What is the empirical formula of the compound?
$? \mathrm{mg} \mathrm{C}=19.73 \mathrm{mg} \mathrm{CO}_{2} \times \frac{1 \mathrm{mmol} \mathrm{CO}_{2}}{44.01 \mathrm{mgCO}_{2}} \times \frac{1 \mathrm{mmol} \mathrm{C}}{1 \mathrm{mmol} \mathrm{CO}_{2}}=0.4483 \mathrm{mmol} \mathrm{C} \times \frac{12.01 \mathrm{mg} \mathrm{C}}{1 \mathrm{mmol}}=$ $5.384 \mathrm{mg} C \quad(78.56 \% \mathrm{C}) ~($
? $\mathrm{mg} \mathrm{H}=6.391 \mathrm{mg} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{mmol}_{2} \mathrm{O}}{18.02 \mathrm{mg} \mathrm{H}_{2} \mathrm{O}} \times \frac{2 \mathrm{mmol} \mathrm{H}_{1} \mathrm{mmol}_{2} \mathrm{O}}{}=0.7093 \mathrm{mmol} \mathrm{H} \times \frac{1.008 \mathrm{mg} \mathrm{H}}{1 \mathrm{mmol} \mathrm{H}}=$ $0.7150 \mathrm{mg} H \quad(10.43 \% \mathrm{H})$
$? m g O=(6.853 \mathrm{mg}-(5.384 \mathrm{mg} C+0.7150 \mathrm{mgH}))=6.853 \mathrm{mg}-6.099 \mathrm{mg}$ $=0.754 \mathrm{mg} \mathrm{O}(11.00 \% O)$
$? \mathrm{mmol} O=0.754 \mathrm{mg} \mathrm{O} \times \frac{1 \mathrm{mmol} \mathrm{O}}{16.00 \mathrm{mg} \mathrm{O}}=0.0471 \mathrm{mmol} \mathrm{O}$
$C_{\frac{0.4483}{0.0471}} H_{\frac{0.7093}{0.0471}} O_{\frac{0.0471}{0.0471}}$
$C_{9.51} H_{15} O_{1} \rightarrow C_{19} H_{30} O_{2}$
10. (5 points) How many grams of copper are in 50.0 mL of a 28.7% solution of copper (II) chloride with a density of $1.284 \mathrm{~g} / \mathrm{mL}$?

$$
? g C u=50.0 \mathrm{~mL} \operatorname{soln} \times \frac{1.284 \mathrm{~g} \mathrm{soln}}{1 \mathrm{~mL} \text { soln}} \times \frac{28.7 \mathrm{~g} \mathrm{Cu}}{100 \mathrm{~g} \mathrm{soln}}=18.4 \mathrm{~g} \mathrm{Cu}
$$

11. (10 points) Phencyclidine or angle dust has a molecular formula $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}$. Answer the following questions regarding phencyclidine.
a. Calculate the molar mass of phencyclidine.
molar mass $=17 \mathrm{C}(12.01 \mathrm{amu} / \mathrm{C})+25 \mathrm{H}(1.008 \mathrm{amu} / \mathrm{H})+1 \mathrm{~N}(14.01 \mathrm{amu} / \mathrm{N})$

$$
=204.2 a m u+25.20 a m u+14.01 a m u=243.4 a m u
$$

b. Calculate the number of moles of carbon in 6.83 moles of phencyclidine.

$$
? \mathrm{~mol} \mathrm{C}=6.83 \mathrm{~mol} \mathrm{phe} \times \frac{17 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{phe}}=116 \mathrm{~mol} \mathrm{C}
$$

c. Calculate the number of molecules of phencyclidine that contains 325 atoms of hydrogen.

$$
? \text { molec } \text { phe }=325 \text { atom } H \times \frac{1 \text { molec } p h e}{25 \text { atom } H}=13 \text { molec } p h e
$$

d. Calculate the mass of phencyclidine that contains 6.836×10^{24} atoms of carbon.
$? g=6.836 \times 10^{24}$ atom $C \times \frac{1 \mathrm{~mol} \mathrm{C}}{6.022 \times 10^{23} \text { atom } \mathrm{C}} \times \frac{1 \mathrm{~mol} \mathrm{phe}}{17 \mathrm{~mol} \mathrm{C}} \times \frac{243.4 \mathrm{~g} \mathrm{phe}}{1 \mathrm{~mol} \mathrm{phe}}=162.5 \mathrm{~g} \mathrm{phe}$
e. Calculate the mass in grams of one molecule of phencyclidine.

$$
? \text { g phe }=1 \text { molec phe } \times \frac{1 \mathrm{~mol} \text { phe }}{6.022 \times 10^{23} \text { molec phe }} \times \frac{243.4 \mathrm{~g} \mathrm{phe}}{1 \mathrm{~mol} \mathrm{phe}}=4.042 \times 10^{-22} \mathrm{~g} \mathrm{phe}
$$

12. (15 points) You mix 527.0 mL of 0.2754 M sodium carbonate with 250.0 mL of 0.6684 M chromium(III) chloride. Write the reaction and determine the number of grams of chromium(III) carbonate produced, and the final concentration of all ions in the solution.

Balanced chemical equation (Check with me before you go on to be sure this is correct.)

	$\mathrm{X}=0.0484 \mathrm{~mol}$		$\mathrm{X}=0.0836 \mathrm{~mol}$				
	$3 \mathrm{Na}_{2} \mathrm{CO}_{4}(\mathrm{aq})$	+	$2 \mathrm{CrCl}_{3}(\mathrm{aq})$	\rightarrow	$6 \mathrm{NaCl}(\mathrm{aq})$	+	$\mathrm{Cr}_{2}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{~s})$
\boldsymbol{I}	0.1451 mol		0.1671 mol		0 mol	0 mol	
Δ	$-3 x$		$-2 x$		$+6 x$		$+x$
E	$0.1451-3 \mathrm{x}$		$0.1671-2 \mathrm{x}$		$6 x$		1 x
	$=0.1451-3(.0484)$ $=0 \mathrm{~mol}$	$=0.1671-2(.0484)$ $=0.0703 \mathrm{~mol}$		$=6(0.0484)$ $=0.2904 \mathrm{~mol}$	$=0.0484 \mathrm{~mol}$		

$$
0.0484 \mathrm{~mol} \mathrm{Cr} 2\left(\mathrm{CO}_{3}\right)_{3} \times \frac{284.0 \mathrm{~g} \mathrm{Cr}}{2}\left(\mathrm{CO}_{3}\right)_{3} \mathrm{~mol} \mathrm{Cr}_{2}\left(\mathrm{CO}_{3}\right)_{3}=13.7 \mathrm{gCr}_{2}\left(\mathrm{CO}_{3}\right)_{3}
$$

$$
\left[\mathrm{Na}^{+1}\right]=\frac{0.2904 \mathrm{~mol} \mathrm{Na}^{+1}}{0.7770 \mathrm{~L} \mathrm{solution}^{2}}=0.3737 \mathrm{M} \mathrm{Na}^{+1}
$$

$$
\left[\mathrm{CO}_{3}^{-2}\right]=\frac{0 \mathrm{~mol} \mathrm{CO}_{3}^{-2}}{0.7770 \mathrm{~L} \mathrm{solution}=0 \mathrm{MCO}_{3}^{-2}}
$$

$$
\left.\left[\mathrm{Cl}^{-1}\right]=\frac{3(0.0703 \mathrm{~mol} \mathrm{Cl}}{}{ }^{-1}\right)+0.2904 \mathrm{~mol} \mathrm{Cl}^{-1}\left(0.7770 \mathrm{~L} \mathrm{solution}=\frac{0.5013 \mathrm{~mol} \mathrm{Cl}^{-1}}{0.7770 \mathrm{~L} \mathrm{solution}^{0.7}=0.6452 \mathrm{M} \mathrm{Cl}^{-1}}\right.
$$

Moles $\mathrm{Cr}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ produced $\quad 0.0484 \mathrm{~mol} \quad$ _ Mass $\mathrm{Cr}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ produced $\quad 13.7 \mathrm{~g}$
Moles $\mathrm{Na}^{+1}=$ \qquad $\left[\mathrm{Na}^{+1}\right]=$
Moles $\mathrm{CO}_{3}{ }^{-2}=$ \qquad $\left[\mathrm{CO}_{3}^{-2}\right]=\quad 0 \mathrm{M}$
Moles $\mathrm{Cr}^{+3}=$ \qquad
$\left[\mathrm{Cr}^{+3}\right]=0.0905 \mathrm{M}$
Moles $\mathrm{Cl}^{-1}=$ \qquad
$\left[\mathrm{Cl}^{-1}\right]=$
\qquad

$$
\begin{aligned}
& 3 \mathrm{Na}_{2} \mathrm{CO}_{3(a q)}+2 \mathrm{CrCl}_{3(a q)} \rightarrow 6 \mathrm{NaCl}_{(a q)}+\mathrm{Cr}_{2}\left(\mathrm{CO}_{3}\right)_{3(s)} \\
& ? \mathrm{~mol} \mathrm{Na} \mathrm{CO}_{3}=527.0 \mathrm{~mL} \times \frac{0.2754 \mathrm{~mol} \mathrm{Na}}{2} \mathrm{CO}_{3}, 1000 \mathrm{~mL} \quad=0.1451 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3} \\
& ? \mathrm{~mol} \mathrm{CrCl}_{3}=250.0 \mathrm{~mL} \times \frac{0.6684 \mathrm{~mol} \mathrm{CrCl}_{3}}{1000 \mathrm{~mL}}=0.1671 \mathrm{~mol} \mathrm{CrCl}_{3}
\end{aligned}
$$

